Research and Development

Robert S. Kerr Environmental Research Laboratory Ada OK 74820

EPA/600/S2-85/022 Feb. 1986

Project Summary

An Introduction to **Ground-Water Tracers**

Stanley N. Davis, Darcy J. Campbell, Harold W. Bentley, and Timothy J. Flynn

An ideal tracer does not exist. Therefore, the selection and use of tracers is almost as much an art as it is a science. The full report (manual) provides a guide for the use of ground-water tracers to practicing engineers, hydrologists, and ground-water hydrologists. The manual is specifically concerned with the selection of tracers, their field application, collection of samples containing tracers, sample analysis, and interpretation of the results.

This Project Summary was developed by EPA's Robert S. Kerr Environmental Research Laboratory, Ada, OK, to announce key findings of the research project that is fully documented in a separate report of the same title (see Project Report ordering information at back).

Introduction

This research project was designed to develop a manual that could be used as a guide for the use of tracers in ground water. Specifically, the manual is concerned with the selection of tracers, their field application, collection of samples containing tracers, sample analysis, and interpretation of the results.

Certain hydrogeologic principles must be understood in order to design successful tracer tests, i.e., Darcy's Law, hydraulic conductivity, the direction of water movement, and the velocity of groundwater flow. Hydrodynamic dispersion and molecular diffusion also play an important role in the area of ground-water tracers.

Results

The purpose and practical constraints of a potential tracer test must be clearly understood prior to the actual planning of

a test. Table 1 indicates some factors to consider in tracer selection. Choice of a tracer will depend partially on which analytical techniques are easily available and which background constituents might interfere with these analyses. Various analytical techniques incorporate different interferences, and consultation with the chemist who will analyze the samples is necessary.

The variety of tracer tests is almost infinite when one considers the various combinations of tracer types, local hydrologic conditions, injection methods, sampling methods, and the geological setting of the site. There are five common problems encountered with tracer tests: site selection for monitoring and injection wells, choice of drilling equipment, choice of casing diameter for monitoring wells, type of casing particularly if tracers are organic compounds or metallic cations, and choice of well construction (screens, perforation, slots, etc.).

The measured quantity which is fundamental for most tracer tests is the first arrival time of the tracer as it goes from an injection point to a sampling point. This conveys at least two items of information. First, it indicates that a connection for ground-water flow actually exists between two points. For many tracer tests, particularly in karst regions, this is all the information that is desired. Second, an approximation of the maximum velocity of ground-water flow between the two points may be obtained if the tracer used is conservative. Interpretations more elaborate than this depend very much on the type of aquifer being tested, the velocity of ground-water flow, the configuration of the tracer injection and sampling systems, and the type of tracer or mixture of tracers used in the test.

	Purpose of Study	······································
		Tracer Type to be Used
Determination of: flo	w path	
vei	locity (solute)	Nonconservative
	locity (water) rosity	Conservative Conservative
dis	spersion coefficient	Conservative
	tribution coefficient	Nonconservative
Delineation of contaminant plume		Constituent of plume
Recharge		Environmental isotope or anthropogenic compound
Dating		Radioactive isotopes
	Available Funds	
Manpower and equip	ment to run tests to completion (e.g., drilling,	tracer cost, sampling, analysis).
	Type of Medium	
		Tracer Туре
Karst		Fluorescent dyes, spores,
		tritium, as well as other tracers
Porous media (alluvium, sandstone, soil)		Wide range of choices Dyes and particulate material are rarely useful
Fractured rock		Wide range of choices Dyes and particulate materia only occasionally are useful
	Stability of Tracer	
Distance from injection to sampling point		Must be stable for length of test and analysis
	of water and approximate estimate of time iven: distance from injection to sampling kness of aquifer	
	Detectability of Tracer	
Background level		
*	test (function of distance, dispersion, pulic conductivity)	
Detection limit of trac	• • • • • • • • • • • • • • • • • • • •	
	ther tracers, water chemistry	
	Difficulty of Sampling and Analys.	is
	Factors to Consider	Example of Difficult Tracer
Availability of tracer		Radioactive (must have specia permits)
Ease of sampling		Gases (will escape easily from poorly sealed container)
Availability of technology for and ease of analysis		Cl-36 (only one or two laboratories in the

Conclusions and Recommendations

As used in hydrogeology, a tracer is matter or energy carried by ground water which will give information concerning the direction of movement and/or velocity of the water and potential contaminants which might be transported by the water.

A tracer should have a number of properties in order to be generally useful. The most important criterion is that the potential chemical and physical behavior of the tracer in ground water must be understood. The objective is commonly to use a tracer that travels with the same velocity and direction as the water and does not interact with solid material. A tracer should be nontoxic, relatively inexpensive to use, and for most practical problems, easily detected with widely available and simple technology.

Table 2 provides a summary of some of the most important tracers presently available.

Table 1. (Continued)

Physical/Chemical/Biological Properties of Tracer

Density, viscosity

May affect flow (e.g., high

Solubility in water Sorptive properties

Stability in water

concentrations of CF) Affects mobility

Affects mobility Affects mobility

Physical radioactive decay

Chemical

Biological

decomposition

and precipitation

Public Health Considerations

degradation

Toxicity

Dilution expected

Maximum permissible level—determined by federal, state, provincial, and county agencies

Proximity to drinking water

Table 2. Summary of Most Important Tracers

Tracer

Characteristics

Particulates

Spores

Used in karst tracing; inexpensive

Detection: high, multiple tests possible by dying spores

different colors Low background

Moderately difficult sampling and analysis (trapping on plankton, then microscopic identification and counting)

No chemical sorption

May float on water, travels faster than mean flow rate

Bacteria Most useful for studying transport of microorganisms Detection: highly sensitive

Sampling: filtration, then incubation and colony counting

No diffusion, slight sorption

Viruses

Detection: highly sensitive

Sampling: culturing, colony counting

Some sorption Smallest particulate

Ions (Non-radioactive, excludes dyes)

Chloride

Conservative

Inexpensive

Stable

Detection: 1 ppm by titration, electrical conductivity, or

selective ion electrode

High background may be problematic

In large quantities, affects density which distorts flow

No sorption

Bromide

Inexpensive

Stable

Detection: 0.5 ppm by selective ion electrode

Low background No sorption

Tracer

Characteristics

C. Dyes

Rhodamine WT

Used in karst and highly permeable sands and gravels

Inexpensive Moderate stability

Detection: 0.1 ppb by fluorimetry Low background fluorescence

Moderate sorption

Fluorescein

Properties similar to Rhodamine WT, except:

Degraded by sun

"Chlorella" bacteria interferes

High sorption

D. Radioactive Tracers

Tritium

High stability

Detection: > 1 ppt by weak β radiation

Varying background

Complex analysis (expensive field and lab equipment)

Half-life = 12.3 years Radiation hazard

Handling and administrative problems

No sorption

131

High stability

Detection: high sensitivity by measuring β and α emission

Background negligible Complex analysis Half-life = 8.2 days Radiation hazard

Sorption on organic material

EDTA-51Cr

Moderately stable (affected by cations)

Detection: highly sensitive, by radiation or post-sampling

neutron activation analysis

No background Half-life = 28 days Radiation hazard Little sorption

⁸²Br

High stability Detection: high sensitivity by measuring β emission

No background Half-life = 35 hours Radiation hazard No sorption

E. Other Tracers

Fluorocarbons

Expensive

High stability

Detection: 1 ppt by gas chromatography with electron

capture detection Low background

Difficult to maintain integrity of samples

Non-degradable, volatile, low solubility, strong sorption by

organic materials

Low toxicity

Organic anions

Detection: few ppb by HPLC

Low background
Expensive analysis
Very low sorption
Low toxicity

The complete report, entitled "An Introduction to Ground-Water Tracers," (Order No. PB 86-100 591/AS; Cost: \$22.95, subject to change) will be available only from:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-487-4650

The EPA Project Officer can be contacted at:
Robert S. Kerr Environmental Research Laboratory

U.S. Environmental Protection Agency

P.O. Box 1198 Ada, OK 74820

United States Environmental Protection Agency Center for Environmental Research Information Cincinnati OH 45268

Official Business Penalty for Private Use \$300

EPA/600/S2-85/022

0000329 PS

U S ENVIR PROTECTION AGENCY REGION 5 LIBRARY 230 S DEARBORN STREET CHICAGO IL 60604 ٠,